Hyperspectral Imaging for Burn Depth Assessment in an Animal Model.
نویسندگان
چکیده
UNLABELLED Differentiating between superficial and deep-dermal (DD) burns remains challenging. Superficial-dermal burns heal with conservative treatment; DD burns often require excision and skin grafting. Decision of surgical treatment is often delayed until burn depth is definitively identified. This study's aim is to assess the ability of hyperspectral imaging (HSI) to differentiate burn depth. METHODS Thermal injury of graded severity was generated on the dorsum of hairless mice with a heated brass rod. Perfusion and oxygenation parameters of injured skin were measured with HSI, a noninvasive method of diffuse reflectance spectroscopy, at 2 minutes, 1, 24, 48 and 72 hours after wounding. Burn depth was measured histologically in 12 mice from each burn group (n = 72) at 72 hours. RESULTS Three levels of burn depth were verified histologically: intermediate-dermal (ID), DD, and full-thickness. At 24 hours post injury, total hemoglobin (tHb) increased by 67% and 16% in ID and DD burns, respectively. In contrast, tHb decreased to 36% of its original levels in full-thickness burns. Differences in deoxygenated and tHb among all groups were significant (P < 0.001) at 24 hours post injury. CONCLUSIONS HSI was able to differentiate among 3 discrete levels of burn injury. This is likely because of its correlation with skin perfusion: superficial burn injury causes an inflammatory response and increased perfusion to the burn site, whereas deeper burns destroy the dermal microvasculature and a decrease in perfusion follows. This study supports further investigation of HSI in early burn depth assessment.
منابع مشابه
Predicting of the Quality Attributes of Orange Fruit Using Hyperspectral Images
Background: Hyperspectral image analysis is a fast and non-destructive technique that is being used to measure quality attributes of food products. This research investigated the feasibility of predicting internal quality attributes, such as Total Soluble Solids (TSS), pH, Titratable Acidity (TA), and maturity index (TSS/TA); and external quality attributes such as color components (L*, a*, b*)...
متن کاملNondestructive Determination of the Total Volatile Basic Nitrogen (TVB-N) Content Using hyperspectral Imaging in Japanese Threadfin Bream (Nemipterusjaponicus) Fillet
Background and Objectives: Considering the importance of safety evaluation of fish and seafood from capture to purchase, rapid and nondestructive methods are in urgent need for seafood industry. This study aimed to assess the application of hyperspectral imaging (HSI: 430-1010 nm) for prediction of total volatile basic nitrogen (TVB-N) in Japanese-threadfin bream (Nemipterusjaponicus) fillets, ...
متن کاملUtility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model.
Surgical intervention of second degree burns is often delayed because of the difficulty in visual diagnosis, which increases the risk of scarring and infection. Non-invasive metrics have shown promise in accurately assessing burn depth. Here, we examine the use of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) for predicting burn depth. Contact burn wounds of increasing...
متن کاملNoninvasive methods for determining lesion depth from vesicant exposure.
Before sulfur mustard (HD) injuries can be effectively treated, assessment of lesion depth must occur. Accurate depth assessment is important because it dictates how aggressive treatment needs to be to minimize or prevent cosmetic and functional deficits. Depth of injury typically is assessed by physical examination. Diagnosing very superficial and very deep lesions is relatively easy for the e...
متن کاملAssessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy.
INTRODUCTION AND AIMS There is a need, both in clinical and research settings, for an affordable, objective method of assessing burn depth. This study compares burn depth assessment by videomicroscopy with laser Doppler imaging (LDI) in patients with dermal burns. The videomicroscope is inexpensive compared to LDI, and can visualise the dermal capillary structure, therefore potentially allowing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plastic and reconstructive surgery. Global open
دوره 3 12 شماره
صفحات -
تاریخ انتشار 2015